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Two of the authors earlier suggested a method of calculating special grid steps for
three point finite-difference schemes which yielded exponential superconvergence of
the Neumann-to-Dirichlet map. We apply this approach to solve the two-dimensional
time-domain wave problem and the 2.5-D elasticity system in cylindrical coordinates.
Our numerical experiments exhibit exponential convergence at prescribed points,
with the cost per grid node close to that of the standard second order finite-difference
scheme. The scheme demonstrates high accuracy with slightly more than two grid
points per wavelength. The reduction of the grid size by one order compared to the
standard scheme with the equidistant grids is observegkooo Academic Press
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1. INTRODUCTION

The simplest and most common discretization of second derivatives in elliptic opel
tors is the three-point stencil. Applied to the two- or three-dimensional Laplace operato
it yields five- or seven-point schemes, respectively, with second order convergence. S
sparse schemes are convenient for the approximation of the spatial part in hyperbolic ec
tions within the framework of finite difference time domain (FDTD) methods, because the
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APPLICATION OF THE DIFFERENCE GAUSSIAN RULES 117

computational cost is directly proportional to the stencil’s size. However, the second ort
convergence schemes for wave problems suffer from high numerical dispersion, and t
typically require more than sixteen points per wavelength to obtain physically meaning
results. Itis well known that an optimal discretization scheme can represent a signal with o
two grid points per period (the Nyquist limit). Conventionally, close-to-optimal discretiza
tions with exponential convergence can be obtained by more computationally expens
spectral and pseudospectral methods with full stencil requiring FFT for time-stepping [

A standard three-point finite-difference approximation of a second order operator OI
on a nonequidistant grid was considered in [2], and it was shown that the optimization of 1
grid with respect to the error of the boundary impedance (the Neuman-to-Dirichlet map)
equivalent to the optimization of a deviation of a rational function from the true impedan:
on a given spectral interval. The grid optimization can be viewed as an implementation
the concept of the Gaussian quadrature rules to the three-point finite differences. A Gaus
k-point quadrature is chosen to be exact fart@al functions, and the optimal grid with
k nodes is chosen in such a way that then2oments of the finite-difference impedance
are exact. An approximate solution of this optimization problem was given in [3] usin
the Pa@=Chebyshev approximant. This solution yielded exponential convergence of t
impedance, i.e., the standard second order scheme with the three-point stencil exhik
spectral superconvergence at a prescribed boundary. In the follow-up paper [4] the sugge
scheme was applied to the two-dimensional Helmholtz equation with piecewise-const
coefficients in a framework similar to that of the multidomain spectral method with tensc
product grids. The resulting scheme coincides with the standard five-point finite-differer
scheme in the interior of the homogeneous subdomains and has up to eight additional pc
at the interfaces; however, it exhibits the spectral convergence at subdomain corners.
should stress that globally the obtained scheme still converges similarly to the stand
discretization with a five-point stencil, i.e., behaves as a second-order scheme with res|
to the maximal grid step. The new approach, though, is ideally suited for geophysi
applications where the solution is needed only at a few receiver points.

Here we apply this scheme within an FDTD framework for the solution of a scalar tw
dimensional wave equation and a 2.5-dimensional elasticity system arising from acou
logging in the semisoft layered formation with the fluid filled borehole. We used the fir
order system approach which simplifies the implementation of the optimal grids comparet
the second order PDE approach exploited in [3, 4]. For simplicity the grid is optimized on
along one coordinate axis. We observe that the optimal grid requires two to three grid po
per minimal wavelength in the model to obtain about two percent accuracy at the receive
This results in one order reduction of the grid size compared to the standard equidis
FDTD with the same error, while the computational cost per grid node is approximately t
same for both methods.

2. SPECTRALLY OPTIMAL FINITE-DIFFERENCE SCHEMES
ON A HOMOGENEITY INTERVAL

Consider a 1-D wave equation on [0] x [0, T], written as a first order system

da do do da

dt —dx  dt dx (1)



118 ASVADUROV, DRUSKIN, AND KNIZHNERMAN

with zero initial and some nontrivial boundary conditions. Using Fourier transformatio
u= [Ge'“dt, v = [ e ' dt, we reduce (2.1) to the first order ODE system

dv du
U= —, A= —, 2.2
Vi dx Vav dx (22)
where = —w?. Throughout this paper we assume thandv vanish foro > wmax i.€.,
we are looking for an approximation to the solution of (2.2) on the spectral interyal]],
wherer; = —w?2,, andi, =0.
First we consider a mixed two-point problem on a segment [0L > 0, and consider

(2.2) with the boundary conditions
v(0) = —1/~/A,  u(L)=0. (2.3)
We define the impedance function@®) = f (1), i.e.,
1— e 2V 2 1

Jid+e vy P S

i=1

u@) = f(r) = (2.4)

whereg; = —[@]2 are the eigenvalues of problem (2.2) with homogeneous bounda
conditions. Problem (2.2)—(2.3) is well-posed for any complexcluding the resonancgs

We now approximate (2.2)—(2.3) by a two-point finite-difference scheme. The potenti
FD solutionu is defined at “potential” nodes, i =1,...,k + 1, X, =0, Xi11 > X;; the

“derivatives”v are defined at nodes, i =0, ..., k, Xo=0. We denotdy =X 1 — X;, hj =
X — Xi_1, and solve the FD problem

ﬁuizw, i:l,...,k,Uk+1=O,
L (2.5)
\/XUiZ%, i=1...,k vo=—1/VA.
i

The crucial fact is thati; = fx (1), where the discrete impedance functifyis a rational
function of» depending ot , h; as parameters.

We would like to optimize the location of gridpoints, i.e., of parameterk; , to minimize
the error| f — fi| on a given spectral interval{, 1,]. We found that standard methods of
constrained optimization fail to provide a reliable answekfer5. We therefore developed
an algorithm to compute the grid steps that give almost optimal error. This algorithm c
be roughly divided into two steps. In Step 1 we calculate a rational approximftianto
the impedance functiofi () given by (2.4). This approximation is obtained by the &ad”
Chebyshev method and is close to optimal for a given interval &f Step 2 we calculate
the parameteri;, h; that produce a rational function obtained in Step 1.

For consistency with previous publications, we temporarily rewrite the FD scheme (2.
as a second order system,

1 /U41—U U —U_ :
AU — ~— — =0 =2,...,k 2.6a
u ( - — ) L oi=2.k (2.62)

1 — 1
My — — (u> =2 Ua=0. (2.6b)
A\
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The above scheme can be written in the matrix form as
aw—Su=hrle, u=(uy,....u". (2.7)

2.1. Rational approximation.To make the operator in (2.7) symmetric, we multiply
Eq. (2.6a) bynl/2 and setw; = hil/zui , which yields

aw — Hw = h; % (2.8)
Here
a1 P11 ... 0
H_HT —BY2SE Y2 _ fgl %2 {82 . (2.9)
0 . Bea a

with B = diag{h;} and
a1 = —(hihp)=t,  B1 = (iv/hihp) ™2,
A 1 1 .
Bi = (hiv/hihiz)™, Oli=—hi_l(+ > i=2 ...,k

hi  hi_g

(2.10)

Denote the eigenvectors 6f by s and the corresponding eigenvaluesthyUsing eigen-
decomposition, we canwritd = LDLT, whereD = diag{#; } andL is the orthogonal matrix
consisting of the eigenvectols = [s; - - - ]. Multiplying (2.8) by LT onthe left and solving
for w, we getw = h; 2L (I — D)"1LTey, or

up = fk) = hilel LI — D) *LTey, (2.11)

wherel is the identity matrix. Finally, we get

oy

fk(A) = _
k(A) 6

i=1

(2.12)

wherey; = sz/ﬁl ands are the first components of vectas

We seek a rational functiofy that approximate$ given by (2.4) on an intervahj, 1,].
Ideally we would like to obtain the optimal approximation from minimization of
max;, x| f () — fk(W)|, but, as was mentioned earlier, we found it impossible with the
help of standard optimization algorithms. Another option is to uses Rgupproximation,
which matches the derivatives éf)) at some poink on the interval in question. It can
be shown that, sincé is a Stieltjes function, P&lapproximations will converge expo-
nentially. However, the approximation error grows rapidly away fegmMe therefore use
Pad&—-Chebyshev approximations which have better properties on an interval.

The Paé=Chebyshev approximari is defined by the condition

A2
/ AER) = fikW]p) da =0, (2.13)
Al
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wherep (L) = {1 — [(2» — (A2 + 1))/ (A2 — 11)]?} Y2 is the Chebyshev spectral weight

adjustedto]1, AxJandl =0, ..., Imax— 1 withlhacthe number of optimization parameters.
The spectral intervall;, A,] can contain some resonancgg®f f (1). Letn, 0<n <Kk,

be the number of such resonances, and prescribe the fesins of f (1) to be the same

as the ones of (2.4), i.e., look fdg (1) of the form

k

21 Y
fk(’\)_fzx—gi+zx—ei' (2.14)

i=1 i=n+1

We clearly have now onll,.x= 2k — 2n parameters of optimization, and thus the problem
of approximation is defined as follows:
Stepl. Findy;, 6;,i =n+1, ..., Kk, such that

/Kz I[i Vi 2 00 1
A F 2N = |p0)di=0 1=0,...,2k-2n—1 (2.15)
M i=n+1 A-6 L i=nt+1 A=

Fori=1,...,nsety;=2/L, 6 =§.

The details of calculation of;, 6; are given in [3] forf (A) = »~%/2. However, only the
stieltjesness of was actually used there, and the main algorithm and results of [3] can |
automatically extended fof (1) given by (2.4) and any Stieltjes function in general.

It can be shown that the convergence of @adhebyshev approximationssigperexpo-
nentialand the error obeys [4]

max | f (1) — f(r)| = O(e Clmaxloglmax) (2.16)
re[A1,2z]

with ¢ > 0 depending oiy, A,. Ashere |y, Ap] = [—wZ 4, 0]ands = —[7 (i —1/2)/L]?, it
follows that the numbar of resonances in (2.14) is given by the integer pa¢t@fnax/7) +

1/2, which is approximately equal to twice the humber of wavelengths corresponding
wmax Within [0, L]. Thus we arrive at an important conclusion that the exponential st
perconvergence occurs after the average grid density exceeds two points per minirr
wavelength, i.e., the Nyquist limit. So, similarly to spectral methods, our finite differenc
scheme asymptotically (for high frequencies) requires only two grid points per wave lenc
to converge.

2.2. Optimal grid construction. Having obtained numbeng, 6 fori =1,...,k, we
now calculate the gridstes, hi. We assume the normalizati@j:‘=1 s? =1 and compute
hi=1/ Zik:l yi ands? = h1y,. We now need to solve the inverse spectral problem, i.e., t
reconstruct the matri¥l from its eigenvalues and the first components of its eigenvector:
This calculation is performed usingkastep recursive Lanczos algorithm that is presented
e.g., in [5]. To avoid loss of orthogonality of the Lanczos vectors in finite precision aritt
metic, we use reorthogonalization [5].

Once the matriXd is obtained ancﬁu is known, we can calculatg,, F]i using (2.10):

Step2. Calculatéh; = —(hiar) "t and fori =2, ..., k

hi = (i_1h? R, hi = —(aihy +1/hi )7L (2.17)

The well-posedness of the resulting finite-difference schemes (2.5)—(2.6) (which is eqL
alent to positiveness df;, h;) is discussed in [3].
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We conclude this section by considering the two-point Neumann problem, i.e., by ir
posing the following boundary conditions on (2.2):

v(0) =-1/vA,  v(L)=0. (2.18)
The impedance is defined as
1+ e 2V 2. 1

Jal—e 2y EZA—&’

i=1

u@© = f(1) = (2.19)

whereg = —[7 (i —1)/L]?. For finite-difference approximation of (2.2)—(2.18) we take the
scheme (2.5) with =0, ux £ 0. The optimal grid is generated using the same algorithn
with the new expression for resonanégs

2.3. Experiment 1—A one-dimensional problero illustrate the developed technique
we consider a problem for (2.1) on,[0] x [0, 5] with the homogeneous initial conditions
and boundary conditiong(0, t) = —%, 0(1, t) =0. Hereg(t) is a wavelet which is close
tothe Gaussian pulgs?’t-0225* The exactsolution of this problemlis= g(x — t) + >,
(-=D'[g(x —t +i +1) + g(x +t —i — 1)]. The cutoff frequency fog is approximately 90,
so we execute the grid generation algorithm with,, = 90 and withk = 35. The spectral
distribution of the error (as a function af= —w?) is presented in Fig. 1. As we see, the
approximation error is very small within the targeted spectral interv@lL0Q 0]. The grid

is shown in Fig. 2; its main features are the staggeredness (potential and derivative pc

-18 L 1 1 1 ] 1 ]

10 ;
-9000 -8000 -7000 -6000 -5000 —-4000 -3000 -2000 -1000 0 1000
lambda

FIG. 1. The finite-difference impedance error.
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FIG. 2. Grid, k=35; the- arex,; the x areX.

alternate), which was not imposed a priori on the grid generation algorithm, and gradi
refinement towardck = 0, which is similar to one of the Legendre—Gauss—Lobatto points
The grid has about 2.5 grid points per minimal wavelength on average, but some steps
even larger than the wavelet size.

The finite-difference solution of this hyperbolic problem is obtained using the standa
explicit FDTD with equal time steps. A two-dimensional plot of the finite-difference so
lution O is presented in Fig. 3. Due to the grid coarsening the wavelet becomes gree
distorted when it moves away from= 0, but the distortion is almost completely reversed
when the wave moves back after it hits the opposite boundary. Such behaviour is coun
intuitive, because usually the finite-difference errors of hyperbolic equations propag:
along characteristics. However, in our grid generation algorithm we approximately mi
imize the error of the finite-difference impedance at the targeted interface and spec
interval, and that is why we observe the local cancellation of the finite-difference dispe
sion error. We separately plotted the slices of the finite-difference solution at the targe
boundary and at the center of the interval in Fig. 4. Although the numerical dispersion
the target does not exceed 1% (the finite-difference solution almost exactly coincides w

t

FIG. 3. The finite-difference solution on the optimal grid for Experimenttlx) coordinates. After every
reflection the numerical dispersion is reversed.
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15 — x=0
-—- x=0.495

solution

FIG. 4. The finite-difference solution at=0 and the center of the spacial interval.

the properly shifted and superposed wavelet), the error at the center of the spacial inte
is larger then 50% of the signal and the shape of the wavelet is greatly distorted.
Finally, for comparison, we add to the optimal grid one potential and one derivative noc
at points(xz4 + X35) /2 and(Xs4+ X35) /2, respectively. This change of the grid decreases thi
maximal grid step (and apparently the local finite-difference truncation error), so one wol
expect that it would decrease the numerical dispersion, but according to Fig. 5 the resu
completely opposite. The point of this illustration is that the targeted error cancellation
the optimal grid can be destroyed even by unbalanced decrease of local truncation erre

3. ONE-DIMENSIONAL MULTIDOMAIN PROBLEMS
FOR THE HELMHOLTZ EQUATION

To be able to consider hyperbolic problems with piecewise homogeneous media an
obtain exponential convergence at points that are interior to the computational domain,
first study the 1-D Helmholtz equation with piecewise constant coefficients. We start tt
section by looking at a two interval problem and derive a conjugation condition that will k
extended to the case of several subdomains.

3.1. Two interval problem. Consider the Helmholtz equation on the intervall;, L]
with a “potential” source defined at poirt=0:

MAU — Uyyx = 8(X), u(—Ly) =u(Ly) =0. (3.1)
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t

FIG. 5. The finite-difference solution irt, x) coordinates, the optimal grid unbalanced by additional nodes.
The numerical dispersion grows monotonically vs time.

This equation can be written as a first order system:
mvVau = v, +8(X)/vVA,  VAv=uy, u(—Ly) =u(Ly) =0. (3.2)
We let the “media” be piecewise constant:

ml? X € [_Lla 0)7

mo, X e (0, L2] (33)

m=m(x)={

This problem can be reduced to problem (2.2)—(2.3) on two subintervals. We natéxhat
is continuous and that(x) satisfies

v(0+) — v(0—) = —1//A. (3.4)

Let functions f;, | =1, 2, denote the impedance functions defined by (2.4) wita L.
Evidently,

u) = FL,(M)VO—)VA = — fo(L)v(0+)V/A. (3.5)

The difference in signs in the formula above results from the fact that to make the equatic
compatible with the previous formulation we bet>—x for the subinterval L1, 0]. Let
hi,hi,i=1 ...,k =1 2 be the steps obtained by the algorithm for (2.2)—(2.3) with
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L =Ly, and letf, x be the corresponding FD impedance functions. We approximate (3.
by the following scheme. Fdr=1, 2

MU = 7 ’i;v“l, i=21...,KUk1=0,
Y 1"_ " (3.6)
~/—v||—77|¥, i=1,...,k
hI i
together with the conjugation conditions
v20—v1o=—1/vA,  Upi=Up;. (3.7)

Heren, =1 andn,; = —1 due to the substitution — —x on subinterval {-L 1, O].
We would like to avoid the extra conditions (3.7). For this purpose wepstu; ;1 = Uz 1
and observe that

vi0 = Mvaushyg + 1, V20 = —Mav/AUrha 1 + va1, (3.8)

— U111 1
VAU = 22 L - (3.9)
v hz 1+ hit o Vahyy + o)

with f = (myhy.1 + mMyhy1) /(A2 1 + Ay 1). The conjugation condition (3.9) will be used on

the interfaces between regions of piecewise constant media as well as on the interfaces
sources. Of course, the erronat 0 (for a fixed, which is not a resonance for either the

continuous or the discrete operator) obeys

lur —u(O)] = O(I fa — foxl + 12— f2iD. (3.10)

Thus, the approximation yields superexponential convergenge=a, and at all other
points of the grid it behaves like a standard solution of a three point scheme with secc
order convergence with respect to the maximal grid step.

Suppose how we need to solve a similar problem with a “derivative” source,

ds(x)
dx ’

which, when written as a first order system, becomes

MAU — Uyy = u(—Lq1) =u(Ly) =0, (3.12)

mMVaU = vy, VAv=Ux+8(X), u(—Ly) =u(Ly) =0. (3.12)

For this systemv(x) remains continuous, while(x) obeysu(0+) — u(0—) = —1. Hence,
(3.12) can be approximated by scheme (3.6) with the conjugation conditions

Upy — Uy =—1, V2,0 = V1,0 (3:13)

To exclude these conditions from the discretized equations, we pufu(0+) + u(0-)]/2,
i.e.,Uz1=U;—1/2,u;1=u1+1/2. From (3.6) we then have

hy1mivau; = —(vy — v10) — mv/ahy1/2,

. . (3.14)
ho1mavAUL = +(v21 — v20) + Mpv/ahy1/2,
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and, using condition (3.13),

. Vo1 — 0 % myh, 1 — m¢h
m\/Xulez’l 1,1+£ N2 1 1N1,1

v 21— 1 (3.15)
hoi+hir 2 hyi+hyg

with m defined as in the case of a potential source. However, sipe@proximates the
average value of the discontinuous functigmx) atx = 0, the equations foy 1 need to be
adjusted:

U —U1 U—uy 17
A = . = = - _— 316
Viv = b T T2k, (3.16)

3.2. Multidomain problem. If the domain of computation is divided into more than
two subintervals, a straightforward application of the scheme discussed above will 1
work because the boundary conditions are defined only for two external subintervals,
not for internal ones. To have well defined boundary conditions for every subinterval, v
use a decomposition of the solution into odd and even parts. For internal subintervz
the “boundary” condition will be defined at the midpoint (Dirichlet for the odd part anc
Neumann for the even), and the appropriate grid steps can be generated using the algori
presented in Section 2.

Consider an intervalX, X,] decomposed inta\ regions with interfaces at poinbs,
I=1,..., A —1. Letthe “media’m(x) be piecewise constant with discontinuities at inter-
facesX;: m(x) =m on [X|_1, X|], I =1,..., A. We allow up toA — 1 potential sources
of weightd, to be defined at internal interfac¥s, . .., X,_1 (the case of derivative and/or
mixed sources is treated similarly), which leads to the problem

1 A-1
MW=vx+— > dsx— X)), 3.17
mv/Au v+ﬁ§|(x D) (3.17a)
Vav=ux,  u(Xp) = u(X,) =0. (3.17b)

Consider an internal subintervial=[X,_1, X|],1 =2,..., A —1. Let 2, be the length of
I, and X; be its midpoint. Fox € [X;_1, X|] let

uNoO) =u) +uX — (x—=X-p]  and  uP(x)=ux) —u[X — (x — Xi_1],

(3.18)
be the even and odd parts of the solutigi), respectively. Evidently,
duN .
—| =0 P(X) =0. 3.19
ax | u= (X (3.19)

We will approximate the odd and even parts of the solution on the first half of each inten
separately and then reconstruct the true solution by linear combination

ux) = uN ) +uPx),  ve) =P+ 0N onx e [Xi_1, X1,

u) =uNe) —uPx),  vx) =vP -V  onxe[X, X].
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Clearly, such decomposition is unnecessary on the two external subintervals, but for s
plicity of notation we can put™ =vN =0,u=uP, v =vP there.

In the discretization of (3.17a)—(3.17b) that follows, the symboéplaces either sym-
bol N or D and is used purely for notational convenience. The discretization is that f
I=1...,A

* *
LU T Ui

mVau =g i =1k,
’ h'i
Ui — Uy
Vi =g g =1, kin=1,...,k -1 (3.20)
Li
D N N
U|!k‘+l = 0, U|’k‘ = 0, U|’k‘+l = 0
Heren,D = ’7|N =1forl =2,..., A—1,i.e., forallinternal subintervals, and for the external
onesn? =-1, nR =1, ni\‘ = ;7[’\\‘71 =0.
The continuity conditions (for potential sources) become thatfet, ..., A — 1

N N D ,,D N, N DD _
Myt T mpaUiaa=m U — 0 U = Uiy,
(3.21)

D P N N D, D NN
(M31v310 + Miativeo) — (W vo — 0 vio) = 7

In order to be able to exclude variablgg as before, we requifg®, =hM, =h ,1=1, ...,
A; we then obtain the conjugation conditions

SR = (v011 +1)|'3‘r1,1) - (v2 —vY) n _ d . (3.22)
hij11+hia Va(hiya1+hig)

with the averagefy = (M1 11+ mib 1)/ (Piis + hia). The fact thah? equalsh)
has only a minor effect on the properties of the optimal grid (in particular, the convergen
remains superexponential).

We note that scheme (3.20) can be transformed to the time domain if multiplicati
by v/ is everywhere replaced by differentiation with respect to time and divisiog’by
of the source function in (3.22)—by time integration. The time dependent scheme ¢
be discretized, e.g., by forward time stepping with the approximations to the unkno
functionsu = u(x, t) andv = v(x, t) staggered in time.

4. APPLICATION TO THE HIGHER-DIMENSIONAL TIME DOMAIN WAVE PROBLEM

For the discretization of the two- or higher-dimensional wave equation with, e.g., potent
sources

A
MU (X, 1) = V-V D) + D g (DS = X)),
=1

Vi (X, 1) = Vu(x, t), X € Q; (4.2)
ux,t)y=0 onog2,

one can extend the scheme described in the previous section, if the coefficiemi(x)
is piecewise constant with discontinuities on the boundaries of rectangular blocks. In t
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case, one can consider a direct product of grids which can be either optimal, or equidist
and apply the decomposition into subintervals described in the previous section for
directions, in which the grid is chosen to be optimal.

We implemented two 2-D time domain finite difference schemes, one of which (“sta
dard”) is based on a direct product of equidistant grids, while the other (“optimal”) i
based on a product of an equidistant grid in #direction and an optimal grid in the
y-direction. We here discuss the results of several experiments by comparing the accui
and convergence properties of these two implementations.

4.1. Experiment 2—Uniform medialn this experiment we solve (4.1) with= (X, y)
andm(x) = const for x € Q=[0, 1]. (For clarity we here use Sl units, e.§,has an
area of one square meter.) The “speee? m~—/2 is chosen to be 1000 m/s. The source
X is located at(x, y) = (0.5, 0.25) and the solution is recorded at a series of 9 receiver:
positioned aix, y) = (0.1, 0.75), ..., (0.9, 0.75). The source signal functiog (t) is the
first derivative of a Blackman-Harris window centered at 10 kHz, as seen in Fig. 6. Tl
signals at the receivers can be calculated analytically and are shown in Fig. 8; these sig
were also computed by finite difference schemes using both “standard” and “optims
programs.

From the spectrum of the signal (Fig. 7), which we consider negligible bel6® dB,
and the speed of the media, we see that the minimum wavelength is approximately 3
The mesh in thex-direction, which is equidistant for both programs, is chosen to be th
same and very fine, so that it does not affect the convergence properties of either sche
The discretization step in thedirection is chosen to produce about 40 points per minima
wavelength (ppw), which is generally considered sufficient for accurate discretization f
equidistant grids.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time, ms.

FIG. 6. Pulse function—first derivative of a Blackman—Harris window.
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10 20 30 40 50 60

Rec. #

Time, ms.

FIG. 8. Recorded signals for Experiment 2.
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Error (%)

FIG.9. L2 error at receivers, Experiment 2. Dashed lines, “standard” program with 10, 20, and 30 ppw in
solid lines, “optimal” program with 1.7, 2.3, and 3.0 ppw in Y.

InFig. 9in dashed lines we show the discrepancies between the analytically calculated
nals and those computed by the “standard” program witlyttlieection discretization of 10,
20, and 30 ppw. We present the relativeerror on an interval [0T ] with T being the maxi-
mum calculation time of 2 ms. The running times for these calculations are shown in Tabl

For the purposes of the “optimal” program, the dom&iwas decomposed in the
direction into 3 regionst; =0, 0.25], 1, =[0.25, 0.75], andl3 =[0.75, 1.0]. The genera-
tion of the optimal mesh was performed according to Sections 1-3; the average densit
gridpoints was chosen as 1.7, 2.3, and 3.0 ppw. The errors are presented in Fig. 9by a
line—one can see that for the desired accuracy of 1-2% the “optimal” program needs m
than10 times fewegrid nodes than the “standard” one.

Because explicit time stepping was used in both programs, we need to consider
guestions of stability of the time stepping operator. It turns out that the Courant condition

TABLE |
Data for Experiment 2—Scalar Wave in Uniform Media

PpwinY TotalptsinY Atused(10”s) Runtime (s)

SP:runl 10 360 6.9 1340
SP:run 2 20 700 6.3 2936
SP:run3 30 1060 5.6 5247
OP:runl 1.7 60 6.7 269
OP:run 2 2.3 80 6.1 401
OP:run3 3.0 104 5.1 580

Note.SP, “standard” program; OP, “optimal” program.
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slightly more restrictive for the “optimal” program, because, even though for @theage
step size is larger than for the “standard” scheme, the stability condition is controlled by t
minimum step size, which, for the “optimal” scheme, may be, and for the same accuracy
slightly smaller. However, the running times presented in Table | show that even under
disadvantage of having a smaller time step, the “optimal” scheme performs much bette
real time of calculation.

As expected, one sees from Table | that the running time for both the “standard” and
“optimal” programs is approximately proportional to the number of nodes ig-itieection
divided by the time step used in the experiment. This confirms the claim that the optimal g
retains the same cost per grid node as the standard scheme. Thus, the overall advante
using the “optimal” scheme is approximately one order of magnitude in real computatior
time or more if more accurate finite difference solutions are desired.

4.2. Experiment 3—Non-uniform medidn this experiment we considered a configu-
ration consisting of rectangular blocks with three different speeds: the background me
with ¢; = 1000v/2 m/s, a fast horizontal layer witty = 1000//3 m/s, and a slow vertical
layer with c3 =1000 m/s on a rectangular domah= [0, 1] x [0, 2] m. The configura-
tion is schematically presented in Fig. 10 and is chosen to remind a borehole intersec
a fast layer in a slow formation. A 10-kHz source is locatedxaty) = (0.5, 0.25) and
the signal is recorded at an array of 9 receivers which are positioned at equal interval
X,y)=(0.1,1.75), ..., (0.9, 1.75). We choose the source function and the slowest medi
the same as in Experiment 2; thus the minimal wavelength remains the same and we
the x-directional mesh (which is equidistant for both programs) to be the same as befc
i.e., about 40 ppw.

The analytic solution to the above problem is not available; we therefore take as “tru

the signals computed by the “optimal” program with 4 ppw in §hrdirection (optimal
mesh). Figure 11 presents the errors between the “true” signal and—in dashed lines—
signals computed by the “standard” program with 12, 30, and 50 ppw ig-thieection.
By comparing Figs.11 and 9 we see that the accuracy of the “standard” scheme deterior
when interfaces and angles are introduced into the problem. In fact, to obtain the g
accuracy of 1-2%, the density of gridpoints had to be increased from 30 to 40-50 poi
per wavelength.

1410 m/s
1000 m/s

2m

ur ¢'Q

1730 m/s

FIG. 10. Media for Experiment 3.
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. . - g ~

Rec. #

FIG. 11. L2 error at receivers, Experiment 3. Dashed lines, “standard” program with 15, 30, and 50 ppw
y; solid lines, “optimal” program with 1.7, 2.3, and 3.0 ppwyin

For the purposes of mesh generation for the “optimal” program, the dofaairas
decomposed into 5 subintervals in tirairection, with interfaces at 0.25, 0.75, 1.25, and
1.75. The runs were made with 1.7, 2.3, and 3.0 ppw, and the errors are presented as
lines in Fig. 11. We see that the quality of approximation of the “optimal” program is th
same or even better than in the case of the uniform media. In fact, only the error of t
signal at receiver 5, which is located in the slowest layer, is as large as in Experiment
while the errors at all other receivers are smaller. This is explained by the fact that the wx
from the source to receiver 5 propagates mainly by the slower vertical medium, hence
average number of gridpoints per minimum wavelength is the smallest for that receiv
while for all other receivers the signal passes through faster medium and thus has lor
wavelength (and more gridpoints per wavelength) on the average. In general, we obsel
that the approximation of the “optimal” program does not deteriorate with the introductic
of interfaces and angles into the problem, and, in fact, the goal 1-2% accuracy was achie
at more than 15 times the speed of the “standard” program.

5. EXTENSION TO 2.5-D CYLINDRICAL ELASTICITY

We here consider equations of motion of a linear elastic isotropic body written in tf
form

d
Fride AV VI + (Vv + V) +gl, (5.1)
d
—Vv=V.1+f, (5.2)

Pat
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wherev = v(x, t) isthe velocity vector; = t(x, t) isthe stresstensdr—= A (x) andu = p(X)

are the Lame parameters—= p(x) is the densityg = g(x, t) is the pressure sourcé—
f(x, t) is the body force, antlis the identity tensor. When a cylindrical coordinate system
is employed, Egs. (5.1)—(5.2) can be written as

d
5(MU) = DU +F. (5.3)
where
U = {vr, Ve, V2 Trr » Tog» Tozs Tr» Trz Tr) (5.4)

M = M(x) is a symmetric, positive-definite matrix of material propertiess, for appro-
priately chosen boundary conditions, a skew-symmetric differential operatoF, @the
generalized source.

We implemented a finite difference discretization of system (5.3) in which the grid in tt
radial direction is kept equidistant and the axial direction grid is optimized. The optimizatic
of the grid for the system of elasticity is performed using the algorithm described in Sectic
1-3, with the usual staggering in space of elastic variables. We arbitrarily assign the no
so that the diagonal component of the stress tensor is positioned in derivative points in k
radial and axial directions.

The discretization scheme is designed so that, for equidistant grids and appropriate bot
ary conditions, it is energy preserving, in the sense that the finite difference operator (i
the discretization of operat® above) is skew-symmetric in the summation inner product
To simulate the response of an infinite medium, perfectly matched layer (PML) absorbi
boundary conditions were used.

5.1. Experiment 4—A well in a layered mediaVe here take as an example a case of
a borehole in a soft formation with a thin fast layer. The dipole ring pressure source
separatedypl m from a vertical array of 4 receivers, which are located at 15 1-cm interval
The source function is again the first derivative of the Blackman—Harris window, center
at 7.5 kHz. The parameters of the media are given in Table II.

We first note that if the layer is not present in the problem, even a coarse discretizatiol
the radial direction gives a very good approximation of the correct solution (which in th
case can be calculated by semi-analytic techniques, e.g., by real axis integration). In pa
ular, we find that even a discretization with 10 points per wavelength(@md an optimal
grid in z of about 3 ppw) produces an error of less than a tenth of a percent.

When we introduce the fast 50-cm layer into the problem between the source and
first receiver, we no longer have the capability to calculate the correct signals by analy
techniques. We therefore take as the reference signals the ones calculated with 36 pp

TABLE Il
Data for Experiment 4—Well in a Layered Media

Media Density kg/i  Compressional speed m/s  Shear speed m/s
Background formation 2054 1890 508
Fast layer 2350 3658 2032

Water 1000 1500 0
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Rec. #

Time, ms.

FIG. 12. Recorded signals, Experiment 4.

Error (%)

1.5 2 2.5
Rec. #

FIG. 13. L2 error at receivers, Experiment 4. Dashed lines, “standard” program with 12 and 25 gpw in
solid lines, “optimal” program with 2.5 and 3.0 ppwin
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r-direction and the optimal mesh that theoretically produces 0.1% error indirection
(this mesh corresponds to an average of 3.25 ppw). It is interesting thatiniraumstep

in the z optimal mesh that was chosen by the program is only about 10% bigger than 1
step in the -direction. Figure 12 shows the resulting signals.

Figure 13 shows the change in the discrepancy between the reference and the calcu
signals with the refinement of the optimal mesh in the axial direction and the refinement
the equidistant mesh in the radial direction. Theirectional (equidistant) mesh was fixed
at 12 ppw for both programs. In dashed lines we show the errors in the signals compute
the two runs of the standard program, with 12 and 25 ppw irzttlieection. In solid lines
we show the errors produced by the optimal program with 2.5 and 3.0 ppw. We here ag
see that for the goal accuracy of 1-2% the optimal program needs about 10 times fe
gridpoints in a given direction and thus performs approximately an order of magnitu
faster in real computational time.

6. CONCLUSIONS

We have demonstrated that just a simple modification of the standard second order Cz
sian finite-difference scheme (practically not affecting its computational cost) for hyperbo
elasticity problems exhibits at some a priori prescribed points the convergence proper
of the spectral method: exponential convergence and good accuracy using only two to tt
grid points per wavelength.

The grid optimization performed along only one coordinate direction reduces the co
putational cost by approximately one order. We anticipate that the optimization with resp
to both coordinates of the two-dimensional problem would speed up the solution by t
orders and that, in principle, the acceleration of three-dimensional problems can be as I
as three orders of magnitude.

The technique developed so far allows an obvious implementation only in the case
piecewise-homogeneous media with interfaces parallel to the Cartezian coordinate a
Important topics of future research are extensions of the concept of optimal grids to n
rectangular domains, noncartesian coordinate systems, and problems with more ger
variations of coefficients. Another interesting future application of the Gaussian finit
difference rules can be the optimization of PML discretization.
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