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Two of the authors earlier suggested a method of calculating special grid steps for
three point finite-difference schemes which yielded exponential superconvergence of
the Neumann-to-Dirichlet map. We apply this approach to solve the two-dimensional
time-domain wave problem and the 2.5-D elasticity system in cylindrical coordinates.
Our numerical experiments exhibit exponential convergence at prescribed points,
with the cost per grid node close to that of the standard second order finite-difference
scheme. The scheme demonstrates high accuracy with slightly more than two grid
points per wavelength. The reduction of the grid size by one order compared to the
standard scheme with the equidistant grids is observed.c© 2000 Academic Press
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1. INTRODUCTION

The simplest and most common discretization of second derivatives in elliptic opera-
tors is the three-point stencil. Applied to the two- or three-dimensional Laplace operators,
it yields five- or seven-point schemes, respectively, with second order convergence. Such
sparse schemes are convenient for the approximation of the spatial part in hyperbolic equa-
tions within the framework of finite difference time domain (FDTD) methods, because their
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computational cost is directly proportional to the stencil’s size. However, the second order
convergence schemes for wave problems suffer from high numerical dispersion, and they
typically require more than sixteen points per wavelength to obtain physically meaningful
results. It is well known that an optimal discretization scheme can represent a signal with only
two grid points per period (the Nyquist limit). Conventionally, close-to-optimal discretiza-
tions with exponential convergence can be obtained by more computationally expensive
spectral and pseudospectral methods with full stencil requiring FFT for time-stepping [1].

A standard three-point finite-difference approximation of a second order operator ODE
on a nonequidistant grid was considered in [2], and it was shown that the optimization of the
grid with respect to the error of the boundary impedance (the Neuman-to-Dirichlet map) is
equivalent to the optimization of a deviation of a rational function from the true impedance
on a given spectral interval. The grid optimization can be viewed as an implementation of
the concept of the Gaussian quadrature rules to the three-point finite differences. A Gaussian
k-point quadrature is chosen to be exact for 2k trial functions, and the optimal grid with
k nodes is chosen in such a way that the 2k moments of the finite-difference impedance
are exact. An approximate solution of this optimization problem was given in [3] using
the Pad´e–Chebyshev approximant. This solution yielded exponential convergence of the
impedance, i.e., the standard second order scheme with the three-point stencil exhibited
spectral superconvergence at a prescribed boundary. In the follow-up paper [4] the suggested
scheme was applied to the two-dimensional Helmholtz equation with piecewise-constant
coefficients in a framework similar to that of the multidomain spectral method with tensor-
product grids. The resulting scheme coincides with the standard five-point finite-difference
scheme in the interior of the homogeneous subdomains and has up to eight additional points
at the interfaces; however, it exhibits the spectral convergence at subdomain corners. We
should stress that globally the obtained scheme still converges similarly to the standard
discretization with a five-point stencil, i.e., behaves as a second-order scheme with respect
to the maximal grid step. The new approach, though, is ideally suited for geophysical
applications where the solution is needed only at a few receiver points.

Here we apply this scheme within an FDTD framework for the solution of a scalar two-
dimensional wave equation and a 2.5-dimensional elasticity system arising from acoustic
logging in the semisoft layered formation with the fluid filled borehole. We used the first
order system approach which simplifies the implementation of the optimal grids compared to
the second order PDE approach exploited in [3, 4]. For simplicity the grid is optimized only
along one coordinate axis. We observe that the optimal grid requires two to three grid points
per minimal wavelength in the model to obtain about two percent accuracy at the receivers.
This results in one order reduction of the grid size compared to the standard equidistant
FDTD with the same error, while the computational cost per grid node is approximately the
same for both methods.

2. SPECTRALLY OPTIMAL FINITE-DIFFERENCE SCHEMES

ON A HOMOGENEITY INTERVAL

Consider a 1-D wave equation on [0, L]× [0, T ], written as a first order system

dû

dt
= dv̂

dx
,

dv̂

dt
= dû

dx
, (2.1)
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with zero initial and some nontrivial boundary conditions. Using Fourier transformation
u = ∫ ûe−iωt dt, v = ∫ v̂e−iωt dt, we reduce (2.1) to the first order ODE system

√
λu = dv

dx
,
√
λv = du

dx
, (2.2)

whereλ=−ω2. Throughout this paper we assume thatu andv vanish forω>ωmax, i.e.,
we are looking for an approximation to the solution of (2.2) on the spectral interval [λ1, λ2],
whereλ1=−ω2

max andλ2= 0.
First we consider a mixed two-point problem on a segment [0, L], L > 0, and consider

(2.2) with the boundary conditions

v(0) = −1/
√
λ, u(L) = 0. (2.3)

We define the impedance function asu(0)= f (λ), i.e.,

u(0) = f (λ) = 1− e−2L
√
λ

√
λ(1+ e−2L

√
λ)
= 2

L

∞∑
i=1

1

λ− ξi
, (2.4)

whereξi =−[ π(i−1/2)
L ]2 are the eigenvalues of problem (2.2) with homogeneous boundary

conditions. Problem (2.2)–(2.3) is well-posed for any complexλexcluding the resonancesξi .
We now approximate (2.2)–(2.3) by a two-point finite-difference scheme. The potential

FD solutionu is defined at “potential” nodesxi , i = 1, . . . , k + 1, x1= 0, xi+1> xi ; the
“derivatives”v are defined at nodeŝxi , i = 0, . . . , k, x̂0= 0. We denotehi = xi+1− xi , ĥi =
x̂i − x̂i−1, and solve the FD problem

√
λui = vi − vi−1

ĥi
, i = 1, . . . , k, uk+1 = 0,

√
λvi = ui+1− ui

hi
, i = 1, . . . , k, v0 = −1/

√
λ.

(2.5)

The crucial fact is thatu1= fk(λ), where the discrete impedance functionfk is a rational
function ofλ depending onhi , ĥi as parameters.

We would like to optimize the location of gridpoints, i.e., of parametershi , ĥi , to minimize
the error| f − fk| on a given spectral interval [λ1, λ2]. We found that standard methods of
constrained optimization fail to provide a reliable answer fork≥ 5. We therefore developed
an algorithm to compute the grid steps that give almost optimal error. This algorithm can
be roughly divided into two steps. In Step 1 we calculate a rational approximationfk(λ) to
the impedance functionf (λ) given by (2.4). This approximation is obtained by the Pad´e–
Chebyshev method and is close to optimal for a given interval ofλ. In Step 2 we calculate
the parametershi , ĥi that produce a rational function obtained in Step 1.

For consistency with previous publications, we temporarily rewrite the FD scheme (2.5)
as a second order system,

λui − 1

ĥi

(
ui+1− ui

hi
− ui − ui−1

hi−1

)
= 0, i = 2, . . . , k, (2.6a)

λu1− 1

ĥ1

(
u2− u1

h1

)
= 1

ĥ1
, uk+1 = 0. (2.6b)
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The above scheme can be written in the matrix form as

λu− Su = ĥ−1
1 e1, u = (u1, . . . ,uk)

T . (2.7)

2.1. Rational approximation.To make the operator in (2.7) symmetric, we multiply
Eq. (2.6a) bŷh1/2

i and setwi = ĥ1/2
i ui , which yields

λw− Hw = ĥ−1/2
1 e1. (2.8)

Here

H = H T = B1/2SB−1/2 =


α1 β1 . . . 0
β1 α2 β2
...

. . .
...

0 . . . βk−1 αk

 , (2.9)

with B= diag{ĥi } and

α1 = −(ĥ1h1)
−1, β1 = (h1

√
ĥ1ĥ2)

−1,
(2.10)

βi = (hi

√
ĥi ĥi+1)

−1, αi = −ĥ−1
i

(
1

hi
+ 1

hi−1

)
, i = 2, . . . , k.

Denote the eigenvectors ofH by si and the corresponding eigenvalues byθi . Using eigen-
decomposition, we can writeH = LDLT , whereD= diag{θi } andL is the orthogonal matrix
consisting of the eigenvectors,L = [s1 · · · sk]. Multiplying (2.8) byLT on the left and solving
for w, we getw= ĥ−1/2

1 L(λI− D)−1LTe1, or

u1 = fk(λ) = ĥ−1
1 eT

1 L(λI− D)−1LTe1, (2.11)

whereI is the identity matrix. Finally, we get

fk(λ) =
k∑

i=1

yi

λ− θi
, (2.12)

whereyi = s2
i /ĥ1 andsi are the first components of vectorssi .

We seek a rational functionfk that approximatesf given by (2.4) on an interval [λ1, λ2].
Ideally we would like to obtain the optimal approximation from minimization of
max[λ1,λ2] | f (λ)− fk(λ)|, but, as was mentioned earlier, we found it impossible with the
help of standard optimization algorithms. Another option is to use Pad´e approximation,
which matches the derivatives off (λ) at some pointλ0 on the interval in question. It can
be shown that, sincef is a Stieltjes function, Pad´e approximations will converge expo-
nentially. However, the approximation error grows rapidly away fromλ0. We therefore use
Padé–Chebyshev approximations which have better properties on an interval.

The Pad´e–Chebyshev approximantfk is defined by the condition∫ λ2

λ1

λl [ f (λ)− fk(λ)]ρ(λ) dλ = 0, (2.13)
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whereρ(λ)={1− [(2λ − (λ2 + λ1))/(λ2 − λ1)]2}−1/2 is the Chebyshev spectral weight
adjusted to [λ1, λ2] andl = 0, . . . , lmax− 1 with lmaxthe number of optimization parameters.

The spectral interval [λ1, λ2] can contain some resonancesξi of f (λ). Let n, 0≤ n≤ k,
be the number of such resonances, and prescribe the firstn terms of fk(λ) to be the same
as the ones of (2.4), i.e., look forfk(λ) of the form

fk(λ) = 2

L

n∑
i=1

1

λ− ξi
+

k∑
i=n+1

yi

λ− θi
. (2.14)

We clearly have now onlylmax= 2k− 2n parameters of optimization, and thus the problem
of approximation is defined as follows:

Step1. Findyi , θi , i = n+ 1, . . . , k, such that∫ λ2

λ1

λl

[
k∑

i=n+1

yi

λ− θi
− 2

L

∞∑
i=n+1

1

λ− ξi

]
ρ(λ) dλ = 0, l = 0, . . . ,2k−2n−1. (2.15)

For i = 1, . . . ,n setyi = 2/L, θi = ξi .
The details of calculation ofyi , θi are given in [3] for f (λ)= λ−1/2. However, only the

stieltjesness off was actually used there, and the main algorithm and results of [3] can be
automatically extended forf (λ) given by (2.4) and any Stieltjes function in general.

It can be shown that the convergence of Pad´e–Chebyshev approximations issuperexpo-
nentialand the error obeys [4]

max
λ∈[λ1,λ2]

| f (λ)− fk(λ)| = O(e−clmax log lmax) (2.16)

with c> 0 depending onλ1, λ2. As here [λ1, λ2]= [−ω2
max, 0] andξi =−[π(i−1/2)/L]2, it

follows that the numbern of resonances in (2.14) is given by the integer part of(Lωmax/π)+
1/2, which is approximately equal to twice the number of wavelengths corresponding to
ωmax within [0, L]. Thus we arrive at an important conclusion that the exponential su-
perconvergence occurs after the average grid density exceeds two points per minimum
wavelength, i.e., the Nyquist limit. So, similarly to spectral methods, our finite difference
scheme asymptotically (for high frequencies) requires only two grid points per wave length
to converge.

2.2. Optimal grid construction. Having obtained numbersyi , θi for i = 1, . . . , k, we
now calculate the gridstepshi , ĥi . We assume the normalization

∑k
i=1 s2

i = 1 and compute
ĥ1= 1/

∑k
i=1 yi ands2

i = ĥ1yi . We now need to solve the inverse spectral problem, i.e., to
reconstruct the matrixH from its eigenvalues and the first components of its eigenvectors.
This calculation is performed using ak-step recursive Lanczos algorithm that is presented,
e.g., in [5]. To avoid loss of orthogonality of the Lanczos vectors in finite precision arith-
metic, we use reorthogonalization [5].

Once the matrixH is obtained and̂h1 is known, we can calculatehi , ĥi using (2.10):
Step2. Calculateh1=−(ĥ1α1)

−1 and fori = 2, . . . , k

ĥi = (βi−1h2
i−1ĥi−1)

−1, hi = −(αi ĥi + 1/hi−1)
−1. (2.17)

The well-posedness of the resulting finite-difference schemes (2.5)–(2.6) (which is equiv-
alent to positiveness ofhi , ĥi ) is discussed in [3].



APPLICATION OF THE DIFFERENCE GAUSSIAN RULES 121

We conclude this section by considering the two-point Neumann problem, i.e., by im-
posing the following boundary conditions on (2.2):

v(0) = −1/
√
λ, v(L) = 0. (2.18)

The impedance is defined as

u(0) = f (λ) = 1+ e−2L
√
λ

√
λ(1− e−2L

√
λ)
= 2

L

∞∑
i=1

1

λ− ξi
, (2.19)

whereξi =−[π(i −1)/L]2. For finite-difference approximation of (2.2)–(2.18) we take the
scheme (2.5) withvk= 0, uk 6= 0. The optimal grid is generated using the same algorithm
with the new expression for resonancesξi .

2.3. Experiment 1—A one-dimensional problem.To illustrate the developed technique
we consider a problem for (2.1) on [0, 1]× [0, 5] with the homogeneous initial conditions
and boundary conditions ˆv(0, t)=− ∂g(t)

∂t , û(1, t)= 0. Hereg(t) is a wavelet which is close

to the Gaussian pulsee−27(t−0.225)2. The exact solution of this problem isû= g(x− t)+∑∞i=1

(−1)i [g(x− t + i + 1)+ g(x+ t − i − 1)]. The cutoff frequency forg is approximately 90,
so we execute the grid generation algorithm withωmax= 90 and withk= 35. The spectral
distribution of the error (as a function ofλ=−ω2) is presented in Fig. 1. As we see, the
approximation error is very small within the targeted spectral interval [−8100, 0]. The grid
is shown in Fig. 2; its main features are the staggeredness (potential and derivative points

FIG. 1. The finite-difference impedance error.
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FIG. 2. Grid, k= 35; the· arexk; the × arex̂k.

alternate), which was not imposed a priori on the grid generation algorithm, and gradual
refinement towardx= 0, which is similar to one of the Legendre–Gauss–Lobatto points.
The grid has about 2.5 grid points per minimal wavelength on average, but some steps are
even larger than the wavelet size.

The finite-difference solution of this hyperbolic problem is obtained using the standard
explicit FDTD with equal time steps. A two-dimensional plot of the finite-difference so-
lution û is presented in Fig. 3. Due to the grid coarsening the wavelet becomes greatly
distorted when it moves away fromx= 0, but the distortion is almost completely reversed
when the wave moves back after it hits the opposite boundary. Such behaviour is counter-
intuitive, because usually the finite-difference errors of hyperbolic equations propagate
along characteristics. However, in our grid generation algorithm we approximately min-
imize the error of the finite-difference impedance at the targeted interface and spectral
interval, and that is why we observe the local cancellation of the finite-difference disper-
sion error. We separately plotted the slices of the finite-difference solution at the targeted
boundary and at the center of the interval in Fig. 4. Although the numerical dispersion at
the target does not exceed 1% (the finite-difference solution almost exactly coincides with

FIG. 3. The finite-difference solution on the optimal grid for Experiment 1,(t, x) coordinates. After every
reflection the numerical dispersion is reversed.
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FIG. 4. The finite-difference solution atx= 0 and the center of the spacial interval.

the properly shifted and superposed wavelet), the error at the center of the spacial interval
is larger then 50% of the signal and the shape of the wavelet is greatly distorted.

Finally, for comparison, we add to the optimal grid one potential and one derivative nodes
at points(x34+ x35)/2 and(x̂34+ x̂35)/2, respectively. This change of the grid decreases the
maximal grid step (and apparently the local finite-difference truncation error), so one would
expect that it would decrease the numerical dispersion, but according to Fig. 5 the result is
completely opposite. The point of this illustration is that the targeted error cancellation of
the optimal grid can be destroyed even by unbalanced decrease of local truncation error.

3. ONE-DIMENSIONAL MULTIDOMAIN PROBLEMS

FOR THE HELMHOLTZ EQUATION

To be able to consider hyperbolic problems with piecewise homogeneous media and to
obtain exponential convergence at points that are interior to the computational domain, we
first study the 1-D Helmholtz equation with piecewise constant coefficients. We start this
section by looking at a two interval problem and derive a conjugation condition that will be
extended to the case of several subdomains.

3.1. Two interval problem. Consider the Helmholtz equation on the interval [−L1, L2]
with a “potential” source defined at pointx= 0:

mλu− uxx = δ(x), u(−L1) = u(L2) = 0. (3.1)
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FIG. 5. The finite-difference solution in(t, x) coordinates, the optimal grid unbalanced by additional nodes.
The numerical dispersion grows monotonically vs time.

This equation can be written as a first order system:

m
√
λu = vx + δ(x)/

√
λ,

√
λv = ux, u(−L1) = u(L2) = 0. (3.2)

We let the “media” be piecewise constant:

m= m(x) =
{

m1, x ∈ [−L1, 0),
m2, x ∈ (0, L2].

(3.3)

This problem can be reduced to problem (2.2)–(2.3) on two subintervals. We note thatu(x)
is continuous and thatv(x) satisfies

v(0+)− v(0−) = −1/
√
λ. (3.4)

Let functions fl , l = 1, 2, denote the impedance functions defined by (2.4) withL = Ll .
Evidently,

u(0) = f1(λ)v(0−)
√
λ = − f2(λ)v(0+)

√
λ. (3.5)

The difference in signs in the formula above results from the fact that to make the equations
compatible with the previous formulation we letx→−x for the subinterval [−L1, 0]. Let
hl ,i , ĥl ,i , i = 1, . . . , k, l = 1, 2 be the steps obtained by the algorithm for (2.2)–(2.3) with
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L = Ll , and let fl ,k be the corresponding FD impedance functions. We approximate (3.2)
by the following scheme. Forl = 1, 2

ml

√
λul ,i = ηl

vl ,i − vl ,i−1

ĥl ,i
, i = 1, . . . , k, ul ,k+1 = 0,

(3.6)√
λvl ,i = ηl

ul ,i+1− ul ,i

hl ,i
, i = 1, . . . , k,

together with the conjugation conditions

v2,0− v1,0 = −1/
√
λ, u1,1 = u2,1. (3.7)

Hereη2= 1 andη1=−1 due to the substitutionx→−x on subinterval [−L1, 0].
We would like to avoid the extra conditions (3.7). For this purpose we putu1= u1,1= u2,1

and observe that

v1,0 = m1

√
λu1ĥ1,1+ v1,1, v2,0 = −m2

√
λu1ĥ2,1+ v2,1, (3.8)

i.e.,

m̃
√
λu1 = v2,1− v1,1

ĥ2,1+ ĥ1,1
+ 1√

λ(ĥ2,1+ ĥ1,1)
(3.9)

with m̃= (m1ĥ1,1+m2ĥ2,1)/(ĥ2,1+ ĥ1,1). The conjugation condition (3.9) will be used on
the interfaces between regions of piecewise constant media as well as on the interfaces with
sources. Of course, the error atx= 0 (for a fixedλ, which is not a resonance for either the
continuous or the discrete operator) obeys

|u1− u(0)| = O(| f1− f1,k| + | f2− f2,k|). (3.10)

Thus, the approximation yields superexponential convergence atx= 0, and at all other
points of the grid it behaves like a standard solution of a three point scheme with second
order convergence with respect to the maximal grid step.

Suppose now we need to solve a similar problem with a “derivative” source,

mλu− uxx = dδ(x)

dx
, u(−L1) = u(L2) = 0, (3.11)

which, when written as a first order system, becomes

m
√
λu = vx,

√
λv = ux + δ(x), u(−L1) = u(L2) = 0. (3.12)

For this systemv(x) remains continuous, whileu(x) obeysu(0+)− u(0−)=−1. Hence,
(3.12) can be approximated by scheme (3.6) with the conjugation conditions

u2,1− u1,1 = −1, v2,0 = v1,0. (3.13)

To exclude these conditions from the discretized equations, we putu1≈ [u(0+)+ u(0−)]/2,
i.e.,u2,1= u1− 1/2, u1,1= u1+ 1/2. From (3.6) we then have

ĥ1,1m1

√
λu1 = −(v1,1− v1,0)−m1

√
λĥ1,1/2,

(3.14)
ĥ2,1m2

√
λu1 = +(v2,1− v2,0)+m2

√
λĥ2,1/2,
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and, using condition (3.13),

m̃
√
λu1 = v2,1− v1,1

ĥ2,1+ ĥ1,1
+
√
λ

2

m2ĥ2,1−m1ĥ1,1

ĥ2,1+ ĥ1,1
, (3.15)

with m̃ defined as in the case of a potential source. However, sinceu1 approximates the
average value of the discontinuous functionu(x) at x= 0, the equations forvl ,1 need to be
adjusted:

√
λvl ,1 = ηl

ul ,2− ul ,1

hl ,1
= ηl

ul ,2− u1

hl ,1
+ 1

2

ηl

hl ,1
. (3.16)

3.2. Multidomain problem. If the domain of computation is divided into more than
two subintervals, a straightforward application of the scheme discussed above will not
work because the boundary conditions are defined only for two external subintervals, but
not for internal ones. To have well defined boundary conditions for every subinterval, we
use a decomposition of the solution into odd and even parts. For internal subintervals,
the “boundary” condition will be defined at the midpoint (Dirichlet for the odd part and
Neumann for the even), and the appropriate grid steps can be generated using the algorithms
presented in Section 2.

Consider an interval [X0, X3] decomposed into3 regions with interfaces at pointsXl ,
l = 1, . . . , 3−1. Let the “media”m(x) be piecewise constant with discontinuities at inter-
facesXl : m(x)=ml on [Xl−1, Xl ], l = 1, . . . , 3. We allow up to3 − 1 potential sources
of weightdl to be defined at internal interfacesX1, . . . , X3−1 (the case of derivative and/or
mixed sources is treated similarly), which leads to the problem

m
√
λu = vx + 1√

λ

3−1∑
l=1

dl δ(x − Xl ), (3.17a)

√
λv = ux, u(X0) = u(X3) = 0. (3.17b)

Consider an internal subintervalIl = [Xl−1, Xl ], l = 2, . . . , 3− 1. Let 2Ll be the length of
Il and X̃l be its midpoint. Forx ∈ [Xl−1, X̃l ] let

uN(x) = u(x)+ u[Xl − (x − Xl−1)] and uD(x) = u(x)− u[Xl − (x − Xl−1)],

(3.18)

be the even and odd parts of the solutionu(x), respectively. Evidently,

duN

dx

∣∣∣∣
X̃l

= 0; uD(X̃l ) = 0. (3.19)

We will approximate the odd and even parts of the solution on the first half of each interval
separately and then reconstruct the true solution by linear combination

u(x) = uN(x)+ uD(x), v(x) = vD(x)+ vN(x) on x ∈ [Xl−1, X̃l ],

u(x) = uN(x)− uD(x), v(x) = vD(x)− vN(x) on x ∈ [ X̃l , Xl ].
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Clearly, such decomposition is unnecessary on the two external subintervals, but for sim-
plicity of notation we can putuN = vN = 0, u= uD, v= vD there.

In the discretization of (3.17a)–(3.17b) that follows, the symbol∗ replaces either sym-
bol N or D and is used purely for notational convenience. The discretization is that for
l = 1, . . . , 3

ml

√
λu∗l ,i = η∗l

v∗l ,i − v∗l ,i−1

ĥ∗l ,i
, i∗ = 1, . . . , kl ,

√
λv∗l ,i = η∗l

u∗l ,i+1− u∗l ,i
h∗l ,i

, i D = 1, . . . , kl , i N = 1, . . . , kl − 1 (3.20)

uD
l ,kl+1 = 0, vN

l ,kl
= 0, uN

l ,kl+1 = 0.

HereηD
l = ηN

l = 1 for l = 2, . . . , 3−1, i.e., for all internal subintervals, and for the external
onesηD

1 =−1, ηD
3−1= 1, ηN

1 = ηN
3−1= 0.

The continuity conditions (for potential sources) become that forl = 1, . . . , 3− 1

ηN
l+1uN

l+1,1+ ηD
l+1uD

l+1,1 = ηN
l uN

l ,1− ηD
l uD

l ,1 ≡ ul ,1,
(3.21)(

ηD
l+1v

D
l+1,0+ ηN

l+1v
N
l+1,0

)− (ηD
l v

D
l ,0− ηN

l v
N
l ,0

) = − dl√
λ
.

In order to be able to exclude variablesv∗l ,0 as before, we requirêhD
l ,1= ĥN

l ,1≡ ĥl ,1, l = 1, . . . ,
3; we then obtain the conjugation conditions

√
λm̃l ul ,1 =

(
vD

l+1,1+ vN
l+1,1

)− (vD
l ,1− vN

l ,1

)
ĥl+1,1+ ĥl ,1

+ dl√
λ
(
ĥl+1,1+ ĥl ,1

) , (3.22)

with the averagẽml =
(
ml+1ĥl+1,1 + ml ĥl ,1

)
/
(
ĥl+1,1 + ĥl ,1

)
. The fact that̂hD

1 equalsĥN
1

has only a minor effect on the properties of the optimal grid (in particular, the convergence
remains superexponential).

We note that scheme (3.20) can be transformed to the time domain if multiplication
by
√
λ is everywhere replaced by differentiation with respect to time and division by

√
λ

of the source function in (3.22)—by time integration. The time dependent scheme can
be discretized, e.g., by forward time stepping with the approximations to the unknown
functionsu= u(x, t) andv= v(x, t) staggered in time.

4. APPLICATION TO THE HIGHER-DIMENSIONAL TIME DOMAIN WAVE PROBLEM

For the discretization of the two- or higher-dimensional wave equation with, e.g., potential
sources

m(x)ut (x, t) = ∇ · v(x, t)+
3∑

l=1

gl (t)δ(x− xl ),

vt (x, t) = ∇u(x, t), x ∈ Ä; (4.1)

u(x, t) ≡ 0 on∂Ä,

one can extend the scheme described in the previous section, if the coefficientm=m(x)
is piecewise constant with discontinuities on the boundaries of rectangular blocks. In this
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case, one can consider a direct product of grids which can be either optimal, or equidistant,
and apply the decomposition into subintervals described in the previous section for the
directions, in which the grid is chosen to be optimal.

We implemented two 2-D time domain finite difference schemes, one of which (“stan-
dard”) is based on a direct product of equidistant grids, while the other (“optimal”) is
based on a product of an equidistant grid in thex-direction and an optimal grid in the
y-direction. We here discuss the results of several experiments by comparing the accuracy
and convergence properties of these two implementations.

4.1. Experiment 2—Uniform media.In this experiment we solve (4.1) withx= (x, y)
andm(x)= const. for x ∈ Ä= [0, 1]2. (For clarity we here use SI units, e.g.,Ä has an
area of one square meter.) The “speed”c=m−1/2 is chosen to be 1000 m/s. The source
x1 is located at(x, y)= (0.5, 0.25) and the solution is recorded at a series of 9 receivers
positioned at(x, y)= (0.1, 0.75), . . . , (0.9, 0.75). The source signal functiong1(t) is the
first derivative of a Blackman-Harris window centered at 10 kHz, as seen in Fig. 6. The
signals at the receivers can be calculated analytically and are shown in Fig. 8; these signals
were also computed by finite difference schemes using both “standard” and “optimal”
programs.

From the spectrum of the signal (Fig. 7), which we consider negligible below−50 dB,
and the speed of the media, we see that the minimum wavelength is approximately 3 cm.
The mesh in thex-direction, which is equidistant for both programs, is chosen to be the
same and very fine, so that it does not affect the convergence properties of either scheme.
The discretization step in thex-direction is chosen to produce about 40 points per minimal
wavelength (ppw), which is generally considered sufficient for accurate discretization for
equidistant grids.

FIG. 6. Pulse function—first derivative of a Blackman–Harris window.



APPLICATION OF THE DIFFERENCE GAUSSIAN RULES 129

FIG. 7. The spectrum of the pulse function seen in the previous figure.

FIG. 8. Recorded signals for Experiment 2.
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FIG. 9. L2 error at receivers, Experiment 2. Dashed lines, “standard” program with 10, 20, and 30 ppw in Y;
solid lines, “optimal” program with 1.7, 2.3, and 3.0 ppw in Y.

In Fig. 9 in dashed lines we show the discrepancies between the analytically calculated sig-
nals and those computed by the “standard” program with they-direction discretization of 10,
20, and 30 ppw. We present the relativeL2 error on an interval [0, T ] with T being the maxi-
mum calculation time of 2 ms. The running times for these calculations are shown in Table I.

For the purposes of the “optimal” program, the domainÄ was decomposed in they-
direction into 3 regions:I1= [0, 0.25], I2= [0.25, 0.75], and I3= [0.75, 1.0]. The genera-
tion of the optimal mesh was performed according to Sections 1–3; the average density of
gridpoints was chosen as 1.7, 2.3, and 3.0 ppw. The errors are presented in Fig. 9 by a solid
line—one can see that for the desired accuracy of 1–2% the “optimal” program needs more
than10 times fewergrid nodes than the “standard” one.

Because explicit time stepping was used in both programs, we need to consider the
questions of stability of the time stepping operator. It turns out that the Courant condition is

TABLE I

Data for Experiment 2—Scalar Wave in Uniform Media

Ppw in Y Total pts in Y 1t used (10−7 s) Run time (s)

SP: run 1 10 360 6.9 1340
SP: run 2 20 700 6.3 2936
SP: run 3 30 1060 5.6 5247
OP: run 1 1.7 60 6.7 269
OP: run 2 2.3 80 6.1 401
OP: run 3 3.0 104 5.1 580

Note.SP, “standard” program; OP, “optimal” program.
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slightly more restrictive for the “optimal” program, because, even though for it theaverage
step size is larger than for the “standard” scheme, the stability condition is controlled by the
minimum step size, which, for the “optimal” scheme, may be, and for the same accuracy is,
slightly smaller. However, the running times presented in Table I show that even under the
disadvantage of having a smaller time step, the “optimal” scheme performs much better in
real time of calculation.

As expected, one sees from Table I that the running time for both the “standard” and the
“optimal” programs is approximately proportional to the number of nodes in they-direction
divided by the time step used in the experiment. This confirms the claim that the optimal grid
retains the same cost per grid node as the standard scheme. Thus, the overall advantage of
using the “optimal” scheme is approximately one order of magnitude in real computational
time or more if more accurate finite difference solutions are desired.

4.2. Experiment 3—Non-uniform media.In this experiment we considered a configu-
ration consisting of rectangular blocks with three different speeds: the background media
with c1= 1000

√
2 m/s, a fast horizontal layer withc2= 1000

√
3 m/s, and a slow vertical

layer with c3= 1000 m/s on a rectangular domainÄ= [0, 1]× [0, 2] m. The configura-
tion is schematically presented in Fig. 10 and is chosen to remind a borehole intersecting
a fast layer in a slow formation. A 10-kHz source is located at(x, y)= (0.5, 0.25) and
the signal is recorded at an array of 9 receivers which are positioned at equal intervals at
(x, y)= (0.1, 1.75), . . . , (0.9, 1.75). We choose the source function and the slowest media
the same as in Experiment 2; thus the minimal wavelength remains the same and we take
the x-directional mesh (which is equidistant for both programs) to be the same as before,
i.e., about 40 ppw.

The analytic solution to the above problem is not available; we therefore take as “true”
the signals computed by the “optimal” program with 4 ppw in they-direction (optimal
mesh). Figure 11 presents the errors between the “true” signal and—in dashed lines—the
signals computed by the “standard” program with 12, 30, and 50 ppw in they-direction.
By comparing Figs.11 and 9 we see that the accuracy of the “standard” scheme deteriorates
when interfaces and angles are introduced into the problem. In fact, to obtain the goal
accuracy of 1–2%, the density of gridpoints had to be increased from 30 to 40–50 points
per wavelength.

FIG. 10. Media for Experiment 3.
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FIG. 11. L2 error at receivers, Experiment 3. Dashed lines, “standard” program with 15, 30, and 50 ppw in
y; solid lines, “optimal” program with 1.7, 2.3, and 3.0 ppw iny.

For the purposes of mesh generation for the “optimal” program, the domainÄ was
decomposed into 5 subintervals in they-direction, with interfaces at 0.25, 0.75, 1.25, and
1.75. The runs were made with 1.7, 2.3, and 3.0 ppw, and the errors are presented as solid
lines in Fig. 11. We see that the quality of approximation of the “optimal” program is the
same or even better than in the case of the uniform media. In fact, only the error of the
signal at receiver 5, which is located in the slowest layer, is as large as in Experiment 2,
while the errors at all other receivers are smaller. This is explained by the fact that the wave
from the source to receiver 5 propagates mainly by the slower vertical medium, hence the
average number of gridpoints per minimum wavelength is the smallest for that receiver,
while for all other receivers the signal passes through faster medium and thus has longer
wavelength (and more gridpoints per wavelength) on the average. In general, we observed
that the approximation of the “optimal” program does not deteriorate with the introduction
of interfaces and angles into the problem, and, in fact, the goal 1–2% accuracy was achieved
at more than 15 times the speed of the “standard” program.

5. EXTENSION TO 2.5-D CYLINDRICAL ELASTICITY

We here consider equations of motion of a linear elastic isotropic body written in the
form

d

dt
τ = λ(∇ · v)I+ µ(∇v+∇vT )+ gI, (5.1)

ρ
d

dt
v = ∇ · τ + f , (5.2)
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wherev= v(x, t) is the velocity vector,τ = τ(x, t) is the stress tensor,λ= λ(x)andµ=µ(x)
are the Lame parameters,ρ= ρ(x) is the density,g= g(x, t) is the pressure source,f =
f (x, t) is the body force, andI is the identity tensor. When a cylindrical coordinate system
is employed, Eqs. (5.1)–(5.2) can be written as

d

dt
(MU ) = DU + F, (5.3)

where

U = {vr , vθ , vz, τrr , τθθ , τzz, τr θ , τrz, τr θ }T , (5.4)

M =M(x) is a symmetric, positive-definite matrix of material properties,D is, for appro-
priately chosen boundary conditions, a skew-symmetric differential operator, andF is the
generalized source.

We implemented a finite difference discretization of system (5.3) in which the grid in the
radial direction is kept equidistant and the axial direction grid is optimized. The optimization
of the grid for the system of elasticity is performed using the algorithm described in Sections
1–3, with the usual staggering in space of elastic variables. We arbitrarily assign the nodes
so that the diagonal component of the stress tensor is positioned in derivative points in both
radial and axial directions.

The discretization scheme is designed so that, for equidistant grids and appropriate bound-
ary conditions, it is energy preserving, in the sense that the finite difference operator (i.e.,
the discretization of operatorD above) is skew-symmetric in the summation inner product.
To simulate the response of an infinite medium, perfectly matched layer (PML) absorbing
boundary conditions were used.

5.1. Experiment 4—A well in a layered media.We here take as an example a case of
a borehole in a soft formation with a thin fast layer. The dipole ring pressure source is
separated by 1 m from a vertical array of 4 receivers, which are located at 15 1-cm intervals.
The source function is again the first derivative of the Blackman–Harris window, centered
at 7.5 kHz. The parameters of the media are given in Table II.

We first note that if the layer is not present in the problem, even a coarse discretization in
the radial direction gives a very good approximation of the correct solution (which in this
case can be calculated by semi-analytic techniques, e.g., by real axis integration). In partic-
ular, we find that even a discretization with 10 points per wavelength inr (and an optimal
grid in z of about 3 ppw) produces an error of less than a tenth of a percent.

When we introduce the fast 50-cm layer into the problem between the source and the
first receiver, we no longer have the capability to calculate the correct signals by analytic
techniques. We therefore take as the reference signals the ones calculated with 36 ppw in

TABLE II

Data for Experiment 4—Well in a Layered Media

Media Density kg/m3 Compressional speed m/s Shear speed m/s

Background formation 2054 1890 508
Fast layer 2350 3658 2032
Water 1000 1500 0
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FIG. 12. Recorded signals, Experiment 4.

FIG. 13. L2 error at receivers, Experiment 4. Dashed lines, “standard” program with 12 and 25 ppw inz;
solid lines, “optimal” program with 2.5 and 3.0 ppw inz.
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r -direction and the optimal mesh that theoretically produces 0.1% error in thez-direction
(this mesh corresponds to an average of 3.25 ppw). It is interesting that theminimumstep
in the z optimal mesh that was chosen by the program is only about 10% bigger than the
step in ther -direction. Figure 12 shows the resulting signals.

Figure 13 shows the change in the discrepancy between the reference and the calculated
signals with the refinement of the optimal mesh in the axial direction and the refinement of
the equidistant mesh in the radial direction. Ther -directional (equidistant) mesh was fixed
at 12 ppw for both programs. In dashed lines we show the errors in the signals computed in
the two runs of the standard program, with 12 and 25 ppw in thez-direction. In solid lines
we show the errors produced by the optimal program with 2.5 and 3.0 ppw. We here again
see that for the goal accuracy of 1–2% the optimal program needs about 10 times fewer
gridpoints in a given direction and thus performs approximately an order of magnitude
faster in real computational time.

6. CONCLUSIONS

We have demonstrated that just a simple modification of the standard second order Carte-
sian finite-difference scheme (practically not affecting its computational cost) for hyperbolic
elasticity problems exhibits at some a priori prescribed points the convergence properties
of the spectral method: exponential convergence and good accuracy using only two to three
grid points per wavelength.

The grid optimization performed along only one coordinate direction reduces the com-
putational cost by approximately one order. We anticipate that the optimization with respect
to both coordinates of the two-dimensional problem would speed up the solution by two
orders and that, in principle, the acceleration of three-dimensional problems can be as large
as three orders of magnitude.

The technique developed so far allows an obvious implementation only in the case of
piecewise-homogeneous media with interfaces parallel to the Cartezian coordinate axes.
Important topics of future research are extensions of the concept of optimal grids to non-
rectangular domains, noncartesian coordinate systems, and problems with more general
variations of coefficients. Another interesting future application of the Gaussian finite-
difference rules can be the optimization of PML discretization.
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